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Extensive thermodynamic parameters of inhomogeneous fluids in thermal equilibrium are expressed
as integrals of corresponding locally defined quantities. In particular, the distinction between the grand
canonical potential and the integrated mechanical pressure is discussed in terms of scale invariance, and
a similar analysis is made of the Helmholtz free energy.
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I. INTRODUCTION

Here we present an attempt to establish a rigorous ap-
proach for the description of inhomogeneous fluids at
thermal equilibrium in terms of properly defined local
thermodynamic quantities. Such a theory is needed, for
example, for the study of fluids near interfaces and in mi-
croporous media, (see Refs. [1] and [2]), where the pores
are often in a size region 5-20 A. Also, the latest devel-
opments in transport theory of dense, strongly inhomo-
geneous fluids [3—5] demonstrate that dynamical proper-
ties of such fluids can be determined in terms of the pres-
sure tensor P[n;r] and “structure factors” [the number
density n(r) and direct and pair correlation functions] of
such fluids at thermodynamic equilibrium. Thus one has
to define a pressure tensor under inhomogeneous condi-
tions.

As has been stressed [6], such a pressure tensor should
satisfy the mechanical equilibrium condition

V,'P[n;r]=—n(r)V u(r), (1.1

where u(r) denotes an external potential field, V. symbol-
izes the spatial gradient operator, and the dot - means the
inner product.

Though Eq. (1.1) does not define P[n;r] uniquely or in
terms of the fluid parameters [say, n(r) and temperature
T], a general class of pressure density functionals satisfy-
ing Eq. (1.1) has been derived [7], which we will refer to
in the sequel. Here we would like to concentrate on the
relationship between the mechanical quantity P{n,r] and
the thermodynamic potentials of the inhomogeneous
fluids. In particular, should we expect the intuitively
comfortable relation

fp[n;r]dr?

Here Q[n] is the grand canonical potential and p[n;r]
the usual scalar pressure: p[n;r]=1/3 TrP[n;r], where
Tr means the trace of a tensor. As we show below, this

Qn]=— (1.2)
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relation does not hold. Nevertheless, the difference be-
tween the left- and right-hand sides of Eq. (1.2) is a ther-
modynamic quantity independent of the particular choice
of P[n;r], and this will lead to a relevant local descrip-
tion for other thermodynamic parameters of the fluid as
well.

II. THERMODYNAMIC REPRESENTATION

We proceed first from a thermodynamic viewpoint.
Suppose that Q[n] is a thermodynamic quantity which is
extensive, i.e., scales as volume when the number density
is uniform. The key to a decomposition of Q[#] into an
integral over volume of a local Q density g[»;r] under
homogeneous conditions,

Q(n]= [qln;rlar,

is the insistence that the functional derivative
8Q[n]/6n(r) be a local quantity, so that a local descrip-
tion could make sense. It certainly would be so in the
idealized example Q[n]= f f(n(r))dr for some function
f(n(r)). A formal way of expressing this is to require
that 8*Q[n]/8n(r)dén(r’) be short range in r—r’, which
means that

(2.1)

. 1.8°Q[nldr _ n-2Q[nldr_
Jatnsr) 5n(r)dn(r') Jalnsr Lnenc)

This requirement can be used at least two different ways.
The first is very formal; one simply derives from the

above that whenever the inverse operator

[[dr'a[n;r']8/6n(r')] ! is well defined, then

Q[n]= [dra[n;r]

fdra[n r']

Q[n]’

X {Sn(r) on (r')

for any functional a[n ;r] and so sets either
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-1
almsr)=alnsrl 5o lfdr’a[n;r’] o1 oln]
(2.2)
or
-1
q[n;r]= [fdra [n; r]6 ) al[n;r] Sn?r)Q[n]
(2.3)

Of course, in the case that a[n;r] is a function, Egs. (2.2)
and (2.3) become identical.

The second representation is somewhat more pictorial.
One can parametrize the number density, starting at zero
density to produce a path or trajectory, n,(r), to the ac-
tual density pattern n(r) at A=1:

no(r)=0; n(r)=n(r) . (2.4)

Then, if Q[n,]=

Qln 1—f

so one can choose

0, one has

SQ[n;\] dn, (r)
Sn;t(r) oA ’

[n,ldA= f dkfd

SQ[nk] an)\'(l')

1
;r]= 2.

L el R @5

as the Q density. If Eq. (2.5) is extended to
_ SQ[nk] anx(r)

glnyrl= fo dny(r) A 2.6

so that
8Q[n;] dn,(r)
Aq[nx, r]=—4——— ) On 2.7)

then Eq. (2.3) is just a special case in which the trajectory
is chosen so that d/0A= fdra(r)ﬁ/?)nk, and a[n;r]isa
function a(r).

Further consideration leads to the conclusion that any
Q density for which Eq. (2.1) holds can be obtained by
some particular choice of the trajectory n,(r), so that the
class of Q densities obtained via Eq. (2.5) is not restric-
tive. Indeed, for any g[n;r] which is a function of r, a
functional of n(r), and satisfies Eq. (2.5), one has to find a
path for which

8q[n;;r'] Ony(r)
on, (r) oA

q[n;r]=f01dkfdr’ 2.8)

Following the strategy of Eq. (2.6) this will certainly hold
if

g[n;.;r'] on,.(r)

q:[n; r]—f dA fd Sne)Bh (2.9)
Applying d/9A, all that is needed is

3 ,8q[ny;r'] on,(r)

axdlmirl=[fdr anA}Er> akx ’ 2.10)

or simply
Sq n)n ]
fd Sn (r')

~fae ,,Sq[nk,r"] .
n,(r') oA

This equation can be solved formally (but not uniquely)
for dn,(r)/0dA, provided the kernel is singular, which it
is, because its integral with respect to r vanishes. The
nonuniqueness is important at the A=0 end, because if
one can be sure that 8g[n;r]/6n(r')=0 at n(r)=0
(which means, for example, that Q can be the excess free
energy, but not the free energy itself), then the quantity
on,(r)/dA at A=0 can be chosen arbitrarily, and in par-
ticular so that the equation dn,(r)/dA=¢[n,;r] satisfies
the second of the boundary conditions (2.4), n,(r)=n(r).

III. MECHANICAL REPRESENTATION

Since the general objective is to provide a scheme for
extending the mechanics of thermal systems to small spa-
tial scales, an alternative is to build the description out of
clearly mechanical quantities, namely the pressure tensor
P[n;r]. This quantity plays the dominant role and in
equilibrium satisfies Eq. (1.1) of force equilibration (in
nonequilibrium, the right-hand side of this equation is re-
placed by suitable inertial forces).

For slow spatial variations in density, P[#;r] is isotro-
pic, P(r)=p(r)I (with I the unit matrix), leading to the
simple pressure equation

Vwo(r)+n(r)Vu(r)=0,

where p(r) is indeed the pressure of a local bulk fluid. If
the variations are not slow, the pressure defined by the
expression p(r)=1 TrP(r) serves as traditional entree to
a thermal description. Since the grand canonical poten-
tial takes the form Q[n]=— f dr p(r) for slowly varying
density, this suggests that the natural generalization of
Q[n] to arbitrary inhomogeneity is precisely Eq. (1.2).

However, Eq. (1.2) is not correct; correcting it intro-
duces an important concept. By a trivial calculation, we
observe that

fdrTrP[n;r]=—;—fdrP[n;r]:V,r
—_1 .
== [dreVPln;r]

_1
—a—fdrn(r)r‘Vruin(r) ,
where
Bin{r)=p—u(r) (3.1

is the intrinsic chemical potential of the fluid.
From the above and n(r)= —8Q[n]/8u;,(r) one has
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8Q[n]

3
—— [drr-V,pu,(r) 1, d __1 .
n ) —Ar— |Q =—— | dr TrP[py;r],
3 SHin(T) o [Am]| =73 [ wird,
1 d r d3Q[n]
3 f Tlaaktm | X ] ] a—=1 Olin(T) where p, (r)=p,; (r /1).
_ 1. d P
=- ?Agx Quy] The operation +A3/3A is an infinitesimal scale trans-
A= formation that does not alter integrals of scale-invariant
Thus quantities
J
1,90 1,8
Thax Jdr fu, (o) Ty [ dr flu(x/0))
1,0 3 —13
—;kﬁfdrk f(pin(0) =12 [ dr f(y(r)
= [dr f(p,(r)

at A=1. Hence Eq. (1.2) is valid in any region in which u(r) is changing slowly enough so that local contributions de-
pend only on local densities and not on scale. Otherwise, Eq. (3.2) defines the grand canonical potential in terms of the

pressure tensor.
The explicit characterization (3.2) in terms of P[u, ;r] extends to other quantities as well, but its form depends upon

the precise quantities being considered. For example, the intrinsic Helmholtz free energy
Fln]=F[n]— [drp,[n;rin(r)

is a functional of the particle density rather than of the local chemical potential. Applying the same scaling here, we
have

1, 3 |5 1 8F;y[n,] _ 1

TAar |Flml k=1fdr3}»8/a)»n(r/?») e 3fdr[r-Vrn(r)],uin[n,r]
=%fdrn(r){3yin[n;r]+r-V,+r‘Vryin[n;r]}
=fdr,u- [n'r]n(r)-i-lfdrrv :P[n;r]

n ’ 3 T ’
or
— 1
’%)‘a% F[nk]kzlzfdrp,in[n;r]n(r)—fdr?TrP[n;r] , (3.3)

where n, (r)=n(r/A), which is the proper generalization of the homogeneous F[n]=uN —PV.
For the intrinsic Gibbs free energy , G[n]=uN — fdr n(r)u(r), one has

6[n]=fdrn(r),uin[n;r] , (3.4)

already in local form.

Other extensive thermodynamic parameters are readily obtained by operations on Egs. (3.2) and (3.3). For example,
from the standard S[u;,]1/kz =B*6Q[u;,1/88| u,v for the entropy (where B=1/[kpT] and kg is the Boltzmann con-
stant), one at once derives:

1,9 | 1 _ B OP[pip;1]

3)‘8)» %y N7 . 3 fdrTr B , (3.5)
where p1,(r)=pu(r/A). For the residual enthalpy H[p;,]=Q[p;, ]+ S[u;,]1/kg, one has

1,90 =1 9 .

TAg [Hlki] T3 fdrTraB {BP[p;;t]} . (3.6)

Using a particular form of the pressure tensor from Ref. [7],
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8f[n;r+yr;—r;]

Plnr]={n(p[n;r]—f(m;e} I+ [ dr, [ dy

Sn(r+yr;)

;Vin(r+yr;), (3.7)

where F[n]= fdrf[n ;r] and f[n;r]= fédkyin[n;r}anx(r)/ak, this route leads to some useful explicit expressions
for “localities” w[n;r] and s[n;r] of the grand canonical potential Q[n]= f dro[n;r] and the entropy

S[n]= [drs[n;r], respectively;

§f[n;r+yr'—r']
Sn(r+yr’)

— ) 1 1
w[n;r]——p[n,r]+—3—fdr fody

1 ’
=—p[n;r]——31—B—fdr’foldyr”’-V,n(r+yr')fo dhcy[ny;r+yr’—r,r+yr']

r'-V.n(r+yr')

on,(r+yr') on,;(r+yr'—r')

on(r+yr') oA ’
(3.8)
o1y 2| _ | 9p[n;r] 1 , 1 82 f[n;r+yr'—r'] | on(r”) 'V n(rt e
sn;rl=ksh [ B “V+ 3 fa'r fo dyfdr dn(r+yr)on(r") B #’Vr n(ryr)
1 sty 8f[mirtyr'—r'] on(r+yr') (3.9)
MR Gy e Cl vl

where c,[n,;r+yr'—r',r+yr’] is the direct correlation
function.

This picture of local thermodynamics of an inhomo-
geneous fluid at equilibrium is completed by the general-
ized compressibility equation in its general form [Eq. (21)
of Ref. [6]] or in the form of Eq. (28) of Ref. [6] for the
pressure tensor [7] given by Eq. (3.7) above.

IV. DISCUSSION

We have shown that the “pressures” entering into
thermal and mechanical descriptions of inhomogeneous
fluids at equilibrium are not quite the same, but are relat-
ed by a scaling transformation. An important conse-
quence is that although the mechanically defined object
P[n;r] from Eq. (1.1) is not unique, the total volume in-
tegral f dr TrP[n;r] must be. Indeed, for a particular

(but very general) class of pressure tensor definitions (3.7)
of Ref. [7] automatically satisfying Eq. (1.1), one can easi-
ly derive that

fdrTrP[n;r]=—-fdrn(r)r-V,,um[n;r] , 4.1)

which is a purely thermodynamic form.

It may be useful to break the abstraction of the analysis
and quote one of the very few instances in which the dis-
tinction between local pressure and what is effectively
grand potential density can be followed in complete de-
tail. This is the case of a hard core (diameter @) fluid in
one dimension. Here the local thermodynamic pressure
is of course given by

BPu(z)=n(z)/[1—an(z)] . 4.2)

But it is also well known that

—pa=[" tnz+ia)r+niz—ta)] [ [1- [

n(w)dw |dz . 4.3)
z—(1/2)a

Expanding about 7 (z), and integrating by parts to reduce to lowest derivatives, the grand potential density can be writ-
ten as

—Bw(z)=n(z)/[1—an(z)]—(a®*/12)n"(z2)}[2—an(z)]/[1—an(z) P+ - - -; (4.4)

a difference involving the familiar gradient-square terms. On the other hand, P(z), now determined uniquely [7] by
(3.7), for this system, becomes

BP(Z)=n(Z)+ fz+(1/2)a

1 1 _ x+(1/2)a
e yan x 2a)/ [1 S n widw |dx @.5)

Integrating over all z and selecting lowest order derivatives, as before, this yields (subscript pt indicates pressure tensor
derived)
—Bo,(z2)=n(z)/[1—an(z)]—(a’/12)n"(2)*{6 —8an(z)+3a’n(z)*/[1—an(z)]}*+ - - -, (4.6)

again differing from (4.2) by gradient-square terms:
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Bo, —Bw=(a’/12)n'(z)*[4—3an(2)]/[1—an(2)]?
+oee 4.7)

In other words, the mechanical and thermodynamic
grand potential densities share, in this difference, the
same sort of correction terms that permeate the study of
nonuniform fluids.

The analysis developed above for inhomogeneous fluids
at equilibrium can be generalized to nonuniform tempera-
ture and hence nonequilibrium states of the fluids. This
is perfectly feasible, requires only the introduction of an

associated conjugate energy density, and will be reported
in a future communication.
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